Abstract

The effect of accelerated crucible rotation technique (ACRT) on liquid phase diffusion (LPD) growth of SixGe1−x crystal has been investigated numerically. Transient, axisymmetric simulations have been carried out for triangular and trapezoidal ACRT cycles. Natural convection driven flow in the early growth hours is found to be modified by the ACRT induced Ekman flow. Results also reveal that a substantial mixing in the solution can be induced by the application of ACRT in the later hours of growth which is otherwise a diffusion dominated growth period for LPD growth technique. A comparison is drawn to the cases of stationary crucible and crucible rotating at a constant speed examined previously for this growth system by Sekhon and Dost (J. Cryst. Growth 430 (2015) 63). It is found that a superior interface flattening effect and radial compositional uniformity along the growth interface can be accomplished by employing ACRT at 12rpm than that which could be achieved by using steady crucible rotation at 25rpm, owing to the higher time averaged growth velocity achieved in the former case. Furthermore, minor differences are also predicted in the results obtained for trapezoidal and triangular ACRT cycles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.