Abstract

We solve the optimal asset allocation problem using a mean variance approach. The original mean variance optimization problem can be embedded into a class of auxiliary stochastic linear-quadratic (LQ) problems using the method in Zhou and Li (2000) and Li and Ng (2000). We use a finite difference method with fully implicit timestepping to solve the resulting nonlinear Hamilton–Jacobi–Bellman (HJB) PDE, and present the solutions in terms of an efficient frontier and an optimal asset allocation strategy. The numerical scheme satisfies sufficient conditions to ensure convergence to the viscosity solution of the HJB PDE. We handle various constraints on the optimal policy. Numerical tests indicate that realistic constraints can have a dramatic effect on the optimal policy compared to the unconstrained solution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.