Abstract

We consider a portfolio consisting of a risk-free bond and an equity index which follows a jump diffusion process. Parameters for the inflation-adjusted return of the stock index and the risk-free bond are determined by examining 89 years of data. The optimal dynamic asset allocation strategy for a long-term pre-commitment mean variance (MV) investor is determined by numerically solving a Hamilton–Jacobi–Bellman partial integro-differential equation. The MV strategy is mathematically equivalent to minimizing the quadratic shortfall of the target terminal wealth. We incorporate realistic constraints on the strategy: discrete rebalancing (yearly), maximum leverage, and no trading if insolvent. Extensive synthetic market tests and resampled backtests of historical data indicate that the multi-period MV strategy achieves approximately the same expected terminal wealth as a constant weight strategy, but with much smaller variance and probability of shortfall.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.