Abstract

Silicon carbide (SiC) power MOSFETs are available only for high-power and medium-to-high-voltage applications, generally above 600 V, because for lower blocking voltages, they comparatively provide lower advantages in terms of efficiency. There are applications, however, for which ruggedness and reliability are as important as efficiency, such as power optimizers for photovoltaic (PV) modules, which fall within the low power, low voltage category of dc–dc converters. These circuits, which maximize the energy produced by each single PV module, operate in continuously changing and stressing conditions yet having to assure high performances in terms of efficiency as well as of temperature insensitivity and long-term reliability. The aim of this paper is to predict the basic characteristics of a 4H-SiC MOSFET tailored for this kind of applications and, therefore, characterized by a breakdown voltage BVDS of 150 V and currents of the order of 10 A. The study, based on numerical simulations, shows that, besides the expected higher ruggedness, the static characteristics would be comparable to those of silicon MOSFETs rated for a comparable BVDS, with $R_{\mathrm{\scriptscriptstyle ON}}$ in the order of 100 $\text{k}\Omega {\cdot} \mu \text{m}^{2}$ , while advantages would result in terms of dynamic characteristics, and in particular in terms of switching times.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.