Abstract

An axisymmetric three-dimensional thermo-physical model for the electrical discharge machining of titanium alloy was developed using finite element method. To efficiently predict the temperature distribution and the material removal rate, the model considers some realistic parameters such as the plasma channel radius based on discharge current and discharge duration, the latent heat of melting and evaporation, the percentage of discharge energy transferred to the workpiece and Gaussian distribution of heat flux. Numerical simulation of the single spark discharge of titanium alloy machining in electric discharge machining process was carried out using software ANSYS. The effect of various process parameters on temperature distributions along the radius of the workpiece was reported. Finally, the model was validated through EDM experiments, showing that it can efficiently predict material removal rate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.