Abstract

This paper reports the development of an intelligent model for the electric discharge machining (EDM) process using finite-element method (FEM) and artificial neural network (ANN). A two-dimensional axisymmetric thermal (FEM) model of single-spark EDM process has been developed based on more realistic assumptions such as Gaussian distribution of heat flux, time- and energy-dependent spark radius, etc. to predict the shape of crater cavity, material removal rate, and tool wear rate. The model is validated using the reported analytical and experimental results. A neural-network-based process model is proposed to establish relation between input process conditions (discharge power, spark on time, and duty factor) and the process responses (crater geometry, material removal rate, and tool wear rate) for various work—tool work materials. The ANN model was trained, tested, and tuned using the data generated from the numerical (FEM) simulations. The ANN model was found to accurately predict EDM process responses for chosen process conditions. It can be used for the selection of optimum process conditions for EDM process.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call