Abstract

This paper describes a mathematical model used to simulate the restart of an axial, compressible and transient flow of a Bingham fluid in circular or annular pipes. The model is based on the mass and momentum conservation equations plus a state equation that relates pressure to density. The viscous effect is modeled by employing a friction factor approach. The governing equations are discretized by using the finite volume method with a first-order upwind scheme, and the resulting non-linear algebraic equations are then solved iteratively. The model results were corroborated by an analytical solution for Newtonian flows. Additionally, the results were also in reasonable agreement with results reported in the literature. We also conducted sensitivity analyses with respect to Reynolds number, aspect ratio, gravity and the non-linear advective terms of the governing equations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.