Abstract

Purpose – The purpose of this paper is to numerically investigate steady, laminar natural and mixed convection heat transfer in a two-dimensional cavity by using a finite volume method with a fourth-order approximation of convective terms, with and without the presence of nanoparticles. Highly accurate benchmark results are also provided. Design/methodology/approach – A finite volume method on a non-uniform staggered grid is used for the solution of two-dimensional momentum and energy conservation equations. Diffusion terms, in the momentum and energy equations, are approximated using second-order central differences, whereas a non-uniform four-point fourth-order interpolation (FPFOI) scheme is developed for the convective terms. Coupled mass and momentum conservation equations are solved iteratively using a semi-implicit method for pressure-linked equation method. Findings – For the case of natural convection problem at high-Rayleigh numbers, grid density must be sufficiently high in order to obtain grid-independent results and capture reality of the physics. Heat transfer enhancement for natural convection is observed up to a certain value of the nanoparticle volume fraction. After that value, heat transfer deterioration is found with increasing nanoparticle volume fraction. Originality/value – Developed a non-uniform FPFOI scheme. Highly accurate benchmark results for the heat transfer of Al2O3-water nanofluid in a cavity are provided.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.