Abstract

Stokes’s second problem is reconsidered for three models of complex fluids: an elasto-viscoplastic fluid, a thixotropic viscoplastic fluid and a discontinuously shear-thickening fluid. In each case, the Stokes-layer dynamics is interrogated with a view to examining the signatures of the detailed rheology. Significant deformations are possible below the yield stress for elasto-viscoplastic fluids as a result of the excitation of elastic waves, particularly near resonances. Thixotropic fluids with viscosity bifurcations layer internally, but surface-speed signatures mostly appear similar to those for simple yield-stress fluids. Stokes-layer oscillations of discontinuous shear thickening fluids can prompt abrupt increases in viscosity, introducing sudden jumps in surface speed. Pre-existing experimental results for layers of kaolin slurries in a motorized, oscillating tray are reconsidered and compared with the results for elasto-viscoplastic and thixotropic fluids.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.