Abstract

Many papers have reported that the standard k − ϵ model fails to accurately predict the mean velocity profile of turbulent axisymmetric jets (Thies and Tam, Computation of turbulent axisymmetric and nonaxisymmetric jet flows using the K − ϵ model, AIAA J., 1996, 34(2), 309–316; Pope, Turbulent Flows, 2002 (Cambridge University press: Cambridge). As the jet velocity increases, the deviation of the model with respect to the experimental measurements also increases. This work is aimed at the development of a modified k − ϵ model that can be used to predict the mean properties of an axisymmetric jet as it (i) flows as a free jet, (ii) propagates between walls, and (iii) impinges on a solid object. Three additional terms are proposed to improve the standard k − ϵ model predictions. They are Durbin realizable, Heinz turbulence production and Sarkar compressibility correction terms. The performance of the modified model in predicting the velocity and the impact pressure profiles of a free jet with an exit Mach number range of 0.6–2.8 has been confirmed by its close agreement with the experimental measurements. In addition, the study suggests that the model is also capable of predicting the impact pressure of a supersonic jet propagating between smooth walls and impinging on the front edge of the wall in various degrees of intensity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.