Abstract

Laser ultrasonic techniques have been widely investigated due to its high spatial resolution and capacity for remote and noncontact measurement. In this study, the laser induced ultrasonic wave on an aluminum plate is simulated, and a nonlinear feature is used to detect a micro crack introduced in the plate model. A multi-physics simulation is conducted and optimized considering the effect of thermal diffusion. A nonlinear feature, called Bhattacharyya Distance (BD), is calculated to show the crack-induced geometric difference among the state space attractors obtained from closely spaced measurement points near the crack. First, a 3D model is built, and its simulation result is compared with an experiment performed using a noncontact laser ultrasonic measurement system. Then, by creating a micro crack in the model, BD is extracted and the crack is successfully detected and visualized. Finally, the effects of BD parameters, such as embedding dimension and frequency band, on damage visualization are investigated.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.