Abstract

This paper presents a damage visualization technique using a fully noncontact laser ultrasonic measurement system and a synchronized scanning strategy. The noncontact laser ultrasonic measurement system is composed of a Q-switched Nd:YAG laser for ultrasonic wave generation and a laser Doppler vibrometer (LDV) for ultrasonic wave detection. The laser beams for ultrasonic wave generation and detection are shot on the target structure with a constant and tiny distance, and these two laser beams are synchronously moved over the scanning area. Compared with conventional laser scanning strategies, the ultrasonic responses detected through the synchronized scanning strategy owns a much higher and more stable signal to noise ratio and the scanning time can be significantly reduced with less time averaging. By spatial comparison in the scanning area, damage can be detected and visualized without relying on baseline data obtained from the pristine condition of the target structure. In this paper, the developed technique is validated by visualization hidden corrosion in a steel straight pipe and a steel elbow pipe.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.