Abstract

The so-called minimal model (MM) of glucose kinetics is widely employed to estimate insulin sensitivity ( S I) both in clinical and epidemiological studies. Usually, MM is numerically identified by resorting to Fisherian parameter estimation techniques, such as maximum likelihood (ML). However, unsatisfactory parameter estimates are sometimes obtained, e.g. S I estimates virtually zero or unrealistically high and affected by very large uncertainty, making the practical use of MM difficult. The first result of this paper concerns the mathematical demonstration that these estimation difficulties are inherent to MM structure which can expose S I estimation to the risk of numerical non-identifiability. The second result is based on simulation studies and shows that Bayesian parameter estimation techniques are less sensitive, in terms of both accuracy and precision, than the Fisherian ones with respect to these difficulties. In conclusion, Bayesian parameter estimation can successfully deal with difficulties of MM identification inherently due to its structure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.