Abstract

The minimal model of glucose kinetics, in conjunction with an insulin-modified intravenous glucose tolerance test, is widely used to estimate insulin sensitivity (S(I)). Parameter estimation usually resorts to nonlinear least squares (NLS), which provides a point estimate, and its precision is expressed as a standard deviation. Applied to type 2 diabetic subjects, NLS implemented in MINMOD software often predicts S(I)=0 (the so-called "zero" S(I) problem), whereas general purpose modeling software systems, e.g., SAAM II, provide a very small S(I) but with a very large uncertainty, which produces unrealistic negative values in the confidence interval. To overcome these difficulties, in this article we resort to Bayesian parameter estimation implemented by a Markov chain Monte Carlo (MCMC) method. This approach provides in each individual the S(I) a posteriori probability density function, from which a point estimate and its confidence interval can be determined. Although NLS results are not acceptable in four out of the ten studied subjects, Bayes estimation implemented by MCMC is always able to determine a nonzero point estimate of S(I) together with a credible confidence interval. This Bayesian approach should prove useful in reanalyzing large databases of epidemiological studies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.