Abstract
Abstract The original problem for eigenwaves of weakly guiding optical fibers formulated on the plane is reduced to a convenient for numerical solution linear parametric eigenvalue problem posed in a disk. The study of the solvability of this problem is based on the spectral theory of compact self-adjoint operators. Properties of dispersion curves are investigated for the new formulation of the problem. An efficient numerical method based on FEM approximations is developed. Error estimates for approximate solutions are derived. The rate of convergence for the presented algorithm is investigated numerically.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.