Abstract

An exact non-reflecting boundary condition is devised for time-harmonic two-dimensional elastodynamics in infinite domains. The domain is made finite by the introduction of a circular artificial boundary on which this exact condition is imposed. In the finite computational domain a finite element method is employed. Numerical examples are presented in which the accuracy and efficiency of the method using the exact non-local boundary condition are compared with those of methods based on approximate local boundary conditions. The method is also used to solve problems in large finite domains by reducing them to smaller domains. In addition, local boundary conditions are derived which are exact for waves with a limited number of angular Fourier components.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.