Abstract

Exact non-reflecting boundary conditions for a linear incompletely parabolic system in one dimension have been studied. The system is a model for the linearized compressible Navier---Stokes equations, but is less complicated which allows for a detailed analysis without approximations. It is shown that well-posedness is a fundamental property of the exact non-reflecting boundary conditions. By using summation by parts operators for the numerical approximation and a weak boundary implementation, it is also shown that energy stability follows automatically.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.