Abstract

A two-dimensional numerical model is developed to predict the time variation of bed deformation in alluvial channel bends. In this model, the depth-averaged unsteady water flow equations along with the sediment continuity equation are solved by using the Beam and Warming alternating-direction implicit scheme. Unlike the present models based on Cartesian or cylindrical coordinate systems and steady flow equations, a body-fitted coordinate system and unsteady flow equations are used so that unsteady effects and natural channels may be modeled accurately. The effective stresses associated with the flow equations are modeled by using a constant eddy-viscosity approach. This study is restricted to beds of uniform particles, i.e., armoring and grain-sorting effects are neglected. To verify the model, the computed results are compared with the data measured in 140° and 180° curved laboratory flumes with straight reaches up- and downstream of the bend. The model predictions agree better with the measured data tha...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call