Abstract

In the present study, a numerical model, based on one-dimensional de Saint-Venant equations along with sediment continuity equation, is developed for prediction of bed levels in non-cohesive sediments in aggrading alluvial channels. One-dimensional, unsteady flow equations and sediment continuity equations are solved using ‘shock-capturing’, second order accurate, explicit MacCormack finite difference scheme while considering upstream and downstream boundary conditions in the channel. Series of experimental investigations have been undertaken for measurements of bed and water levels in an aggrading channel due to overloading of nonuniform sediments, extracted from the bed of Tapi River at Surat City, in a flume installed in Advanced Hydraulics Laboratory of SVNIT, Surat, India. A satisfactory coupling between the water flow and sediment flow has been achieved. The sediment continuity equation is used for the each size class to compute the volume of each size class after each time step at any computational node in the computational grid. The fractional bed and suspended load transport capacities for different size fractions have been computed using fractional transport laws for nonuniform sediments. The active bed layer concept has been implemented in finite difference scheme to consider the interaction and exchange of sediment and water flow near the mixing layer. The performance of developed numerical model has been satisfactorily verified with independent experimental data of nonuniform sediment bed. Also, consideration of sediment nonuniformity in computation of bed level variation has been demonstrated by comparing the results based on sediment transport functions of uniform and nonuniform sediments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call