Abstract

A three-dimensional model to calculate X-ray intensity distribution on an indirectly driven fusion target is presented. The model includes conversion of laser light into X rays, radiation reemission from X-ray-heated wall of a cavity, and influence of an inner pellet (i.e., a fuel capsule) on radiation redistribution. Intensity distribution of an X ray inside a cylindrical cavity heated by intense blue laser light (wavelength 351 nm, energy 5.2 kJ, duration 0.7 ns) was determined by measuring a burn-through signal from a diagnostic foil integrated onto the cavity. The experimental result is well replicated by the model calculation. By using this model, optimum conditions for uniform irradiation of afusion capsule by X-ray radiation are evaluated for use in Gekko XII laser fusion experiments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call