Abstract

A high resolution computational fluid dynamics model is used to simulate a steady air entraining laboratory scale hydraulic jump. A detailed examination of shear layer instabilities reveals the dynamic relationship between spanwise vortices, free surface fluctuations, and air–water spatial patterns. Spanwise vortices generated at the toe roll-up under a variable depth roller, creating large free surface fluctuations through high velocity water ejections in the roller. The mean shear layer elevation and free surface elevations periodically alternate between positive and negative correlation throughout the roller, driven by dynamic vortex transport. Vortices descending towards the lower wall create an upwelling of non-bubbly fluid into the shear layer that contributes to regions of decreased bubble concentration between vortices. The position of a strong shear layer at the location of maximum air entrainment, directly above the jump toe, leads to highly aerated vortices that influence bubble behavior. Bubbles breakup quickly after entrainment at the toe and bubble clusters are observed most frequently below and at the end of the roller where bubble breakup and energy dissipation are diminished. The dominant separation angle of clustered bubbles is independent of downstream distance and aligns closely with the direction of initial shear, suggesting bubble clustering is a remnant of bubble breakup.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.