Abstract

With the development of intelligent computing technology, deep learning methods have provided an efficient solution for rapid flow field prediction in computational fluid dynamics (CFD) problems. However, existing methods have limitations in handling interference among physical variables due to different data distributions, leading to a decline in prediction performance. In this paper, we propose MH-DCNet, an improved flow field prediction framework that couples a neural network with a physics solver. Specifically, to address the data distribution problem, we design a multi-head deep convolutional neural network that decouples the prediction of physical variables through multiple encoders and decoders. We also develop a hybrid loss function by introducing the mean structural similarity to better capture the complex spatial structures and distribution features of flow fields. We evaluate MH-DCNet with unseen geometries and various flow conditions. Experimental results show that MH-DCNet outperforms other advanced models in efficiency and generalization capability. It accelerates the prediction process by 2.35 times compared to the CFD method while meeting the convergence constraints.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.