Abstract

A hydraulic jump is the highly turbulent transition between a high-velocity impinging flow and a turbulent roller. The jump flow is characterised by some substantial air bubble entrainment, spray and splashing. In the present study, the free-surface fluctuations and air–water properties of the hydraulic jump roller were investigated physically for relatively small Froude numbers (2.4 < Fr 1 < 5.1) and relatively large Reynolds numbers (6.6 × 10 4 < Re < 1.3 × 10 5). The shape of the mean free surface profile was well defined, and the time-averaged free-surface elevation corresponded to the upper free-surface, with the quantitative values being close to the equivalent clear-water depth. The turbulent fluctuation profiles exhibited a maximum in the first part of the hydraulic jump roller. The free-surface fluctuations presented some characteristic frequencies between 1.4 and 4 Hz. Some simultaneous free-surface measurements at a series of two closely located points yielded the free-surface length and time scales of free-surface fluctuations in terms of both longitudinal and transverse directions. The length scale data seemed to depend upon the inflow Froude number, while the time scale data showed no definite trend. Some simultaneous measurements of instantaneous void fraction and free-surface fluctuations exhibited different features depending upon the phase-detection probe sensor location in the different regions of the roller.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call