Abstract

The major source of loss in modern compressors is the secondary loss. Non-axisymmetric endwall profile contouring is now a well established design methodology in axial flow turbines. However, flow development in axial compressors is differ from turbines, the effects of non-axisymmetric endwall to axial compressors requires flow analysis in detail. This paper presents both experimental and numerical data to deal with the application of a non-axisymmetric hub endwall in a high-subsonic axial-flow compressor. The aims of the experiment here were to make sure the numerically obtained flow fields is the physical mechanism responsible for the improvement in efficiency, due to the non-axisymmetric hub endwall. The computational results were first compared with available measured data of axisymmetric hub endwall. The results agreed well with the experimental data for estimation of the global performance. The coupled flow of the compressor rotor with non-axisymmetric hub endwall was simulated by a state-of-the-art multi-block flow solver. The non-axisymmetric hub endwall was designed for a subsonic compressor rotor with the help of sine and cosine functions. This type of non-axisymmetric hub endwall was found to have a significant improvement in efficiency of 0.45% approximately and a slightly increase for the total pressure ratio. The fundamental mechanisms of non-axisymmetric hub endwall and their effects on the subsonic axial-flow compressor endwall flow field were analyzed in detail. It is concluded that the non-axisymmetric endwall profiling, though not optimum, can mitigate the secondary flow in the vicinity of the hub endwall, resulting in the improvement of aerodynamic performance of the compressor rotor.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call