Abstract
This article proposes a hybrid scheme on layer-adapted meshes for solving singularly perturbed initial value problem depending on a parameter. Layer-adapted meshes namely standard Shishkin mesh and modified Shishkin mesh (Bakhvalov-Shishkin mesh and Vulanovic mesh) are considered. The hybrid scheme is a combination of second order central difference scheme on the fine mesh and a modified midpoint upwind scheme on the coarse mesh. The error analysis is carried out. We establish a second order parameter uniform convergence rate for the numerical solution and also for the scaled numerical derivative. It is also shown that the modified Shishkin mesh and graded mesh like Gartland-Shishkin mesh and Duran-Shishkin mesh give better results than the standard Shishkin mesh. In order to illustrate the efficiency of the proposed method, some numerical experiments are shown which support the theoretical findings.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Mathematical Modelling and Numerical Optimisation
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.