Abstract
In this article, we construct and analyze a higher order numerical method for a class of two dimensional parabolic singularly perturbed problem (PSPP) of convection–diffusion (C–D) type for the case when the convection coefficient is vanishing inside the domain. The asymptotic behavior of the exact solution is studied for the considered problem. Peaceman–Rachford scheme on a uniform mesh is used for time discretization and a hybrid scheme on the Bakhvalov–Shishkin mesh is applied for spatial discretization. The convergence analysis shows that the proposed scheme is uniformly convergent with respect to parameter ɛ. It is established that the hybrid scheme on the Bakhvalov–Shishkin mesh has second order of convergence despite the use of the standard Shishkin mesh which leads to order reduction due to the presence of a logarithmic term. The numerical results corroborate the theoretical expectations and show high accuracy of the proposed scheme over the hybrid scheme on a standard Shishkin mesh. Also, the hybrid scheme is compared with the upwind scheme through the numerical results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.