Abstract
The simple spring structure, with detachable electrical contacts, is a very suitable solution for many applications, such as electromechanical relays and connectors. However, they are prone to exhibit instantaneous interruption faults under mechanical vibration environments. In this paper, the governing equations of the modal analysis of a beam with cantilever-Hertzian contact boundary conditions are presented. Then, the time domain analysis method and frequency domain analysis method for solving the forced vibration response are described explicitly. Next, the effect of the axial force on the modal frequency of a detailed model sourced from the practical relay is investigated by using commercial ANSYS Workbench 2021R1 software. Afterward, the harmonic response of the beam is numerically solved individually by using the transient analysis model and the harmonic analysis model in ANSYS Workbench 2021R1 software. Then, the influences of the damping coefficient and excited frequency on the contact force response are investigated. The experimental results of transient displacement and contact resistance of the beam structure agree well with the simulation outcomes. It is proven that there is a linear relationship between the stiffness coefficient and the mass coefficient, which are used for characterizing the damping of the structures in the time domain method and frequency domain methods.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have