Abstract
To improve the prediction accuracy of milling tool wear, a prediction method based on Attention-LSTM is proposed. In the training phase, first, the data are pre-processed by truncation, downsampling, and the Hampel filtering method, and then features are extracted by the time domain, frequency domain, and time-frequency domain analysis methods. Second, a deep neural network is designed to describe the complex nonlinear function between features and tool wear. Last, aiming at the insufficient prediction accuracy due to the LSTM lacking feature extraction and enhancement, the Attention mechanism is introduced to optimize the model. The results suggest that this prediction method provides an efficient strategy for milling tool wear prediction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.