Abstract

The paper deals with the numerical homogenization of polymer/clay nanocomposites by using the boundary element method (BEM). The reinforcement has the form of stacks of parallel clay sheets modelled by effective isotropic particles. Two-dimensional representative volume elements (RVEs), containing randomly distributed parallel rectangular particles, are modelled and five plane-strain elastic constants of the orthotropic composite are analysed: two Young’s moduli, shear modulus and two Poisson’s ratios. The results are compared to experimental data, finite element method (FEM) results, and analytical models as well. The positive-definiteness and symmetry of the apparent compliance matrix are verified. All the comparisons and tests confirm validity of the applied method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.