Abstract

In this paper a hybrid, finite element--boundary element method which can be used to solve for particle advection-diffusion in infinite domains with variable advective fields is presented. In previous work either boundary element, finite element, or difference methods have been used to solve for particle motion in advective-diffusive domains. These methods have a number of limitations. Due to the complexity of computing spatially dependent Green`s functions, the boundary element method is limited to domains containing only constant advective fields, and due to their inherent formulation, finite element and finite difference methods are limited to only domains of finite spatial extent. Thus, finite element and finite difference methods are limited to finite space problems for which the boundary element method is not, and the boundary element method is limited to constant advection field problems for which finite element and finite difference methods are not. In this paper it is proposed to split a domain into two sub-domains, and for each of these sub domains, apply the appropriate solution method; thereby, producing a method for the total infinite space, variable advective field domain.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call