Abstract

The aerodynamic characteristics of tandem cables of cable-stayed bridges have become an increasingly serious problem with increments in span length. In order to reduce the construction cost and maintenance of cables, tandem cables have been adopted for cable-stayed bridges. These cables, however, have aerodynamic response characteristics such as wake-galloping. Therefore, a method to suppress wake-galloping in tandem cables is required. The purpose of this study is to investigate the characteristics of the wake-galloping phenomenon of tandem cables of cable-stayed bridges using numerical fluid flow analysis. The flow around the oscillating tandem circular cylinders modeled on tandem cables is calculated. The flow field is treated as an incompressible viscous flow. The Arbitrary Lagrangian-Eulerian (ALE) method is employed to solve the flow field around the cylinders, and the three-step Taylor-Galerkin method, which is based on a fractional step finite element method, is adopted for discretization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.