Abstract

Direct numerical simulations of incompressible nonhelical randomly forced MHD turbulence are used to demonstrate for the first time that the fluctuation dynamo exists in the limit of large magnetic Reynolds number Rm>>1 and small magnetic Prandtl number Pm<<1. The dependence of the critical Rmc for dynamo on the hydrodynamic Reynolds number Re is obtained for 1 less than or similar Re less than or similar 6700. In the limit Pm<<1, Rmc is about 3 times larger than for the previously well-established dynamo at large and moderate Prandtl numbers: Rmc less than or similar 200 for Re greater than or similar 6000 compared to Rmc approximately 60 for Pm>or=1. It is not yet possible to determine numerically whether the growth rate of the magnetic energy is proportional, Rm1/2 in the limit Rm-->infinity, as it should be if the dynamo is driven by the inertial-range motions at the resistive scale.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.