Abstract
The characteristic equation of a system of delay differential equations (DDEs) is a nonlinear equation with infinitely many zeros. The stability of a steady state solution of such a DDE system is determined by the number of zeros of this equation with positive real part. We present a numerical algorithm to compute the rightmost, i.e., stability determining, zeros of the characteristic equation. The algorithm is based on the application of subspace iteration on the time integration operator of the system or its variational equations. The computed zeros provide insight into the system’s behaviour, can be used for robust bifurcation detection and for efficient indirect calculation of bifurcation points.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.