Abstract
Previous studies have demonstrated that an automated filament winding process can conveniently produce shear reinforcement for concrete structures. The method allows the creation of geometrically complex elements suitable for materials optimisation. This is in addition to the advantages of non-metallic reinforcement. On the contrary, the biggest drawback is the anisotropy properties of fibrous materials. Concentrations of stresses and material defects characterise the reinforcement’s curved portions; thus, material efficiency reduction is expected. Generally, the strength of pultruded FRP stirrups is estimated at about 30-40% of the tensile strength in the direction of the fibres. Still, experimental studies have shown that efficiency can be increased due to the manufacturing process and cross-section aspect ratio. This study aims to identify a mechanical model for predicting the bent strength of FRP stirrups fabricated by the filament winding technique. This is here formalised as a non-linear equilibrium problem of a curved Timoshenko beam on an elastic foundation. Numerical results agree with the experimental data available from previous studies, assessing the model’s suitability.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.