Abstract

The local-energy-transfer (LET) theory (McComb 1978) was used to calculate freely decaying turbulence for four different initial spectra at low-to-moderate values of microscale Reynolds numbers (Rλ up to about 40). The results for energy, dissipation and energy-transfer spectra and for skewness factor all agreed quite closely with the predictions of the well-known direct-interaction approximation (DIA: Kraichnan 1964). However, LET gave higher values of energy transfer and of evolved skewness factor than DIA. This may be related to the fact that LET yields the k−5/3 law for the energy spectrum at infinite Reynolds number.The LET equations were then integrated numerically for decaying isotropic turbulence at high Reynolds number. Values were obtained for the wavenumber spectra of energy, dissipation rate and inertial-transfer rate, along with the associated integral parameters, at an evolved microscale Reynolds number Rλ of 533. The predictions of LET agreed well with experimental results and with the Lagrangian-history theories (Herring & Kraichnan 1979). In particular, the purely Eulerian LET theory was found to agree rather closely with the strain-based Lagrangian-history approximation; and further comparisons suggested that this agreement extended to low Reynolds numbers as well.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call