Abstract

Energy transfer processes in decaying, three-dimensional, isotropic turbulence are investigated using numerical results from local energy transfer (LET) theory. The study covers a wide range of evolved, microscale Reynolds numbers (5 < Rλ < 250). It is found that the energy transfer is mainly local (between scales of similar size), but there are also some signs of nonlocal transfer at higher Reynolds number. The nature of the underlying triad-wavenumber interactions, on the other hand, seems to depend on both the Reynolds number and the wavenumber range of interest. In the energy containing and dissipation ranges, both local (all three scales of the triad interaction are of comparable size) and nonlocal (one scale is much larger than the remaining two) interactions are important, with the latter becoming more dominant as the Reynolds number increases. But our nonlocal interactions tend to be less severe than those observed by Domaradzki and Rogallo. More significantly, in the inertial range of high Reynolds number flows, the LET theory predicts dominance of local and near-local interactions. While this is contrary to the result from eddy damped quasi-normal Markovian theory that the important triad interactions are mainly nonlocal, it is closer to the Kolmogorov picture of turbulence. Another interesting result is that, despite their inherent differences, the LET theory and the full simulation of Ohkitani and Kida predict inertial-range values for the energy transfer locality function in fairly good agreement, not only with each other, but also with the analytical closure theory result for infinite Reynolds number, stationary turbulence by Kraichnan. The calculated values reveal that the contributions to the net energy transfer are predominantly from near-local interactions (scale ratios ≈ 4), which is indicative of cancellation of large numbers of highly nonlocal interactions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.