Abstract

Developing mathematical models of fractional order for physical phenomena and constructing numerical solutions for these models are crucial issues in mathematics, physics, and engineering. Higher order temporal fractional evolution problems (EPs) with Caputo’s derivative (CD) are numerically solved using a sextic polynomial spline technique (SPST). These equations are frequently applied in a wide variety of real-world applications, such as strain gradient elasticity, phase separation in binary mixtures, and modelling of thin beams and plates, all of which are key parts of mechanical engineering. The SPST can be used for space discretization, whereas the backward Euler formula can be used for time discretization. For the temporal discretization, the method’s convergence and stability are assessed. To show the accuracy and applicability of the proposed technique, numerical simulations are employed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.