Abstract

A quintic B-spline collocation technique is employed for the numerical solution of time-fractional fourth-order partial differential equations. These equations occur in many applications in real-life problems such as modelling of plates and thin beams, strain gradient elasticity and phase separation in binary mixtures, which are basic elements in engineering structures and are of great practical significance to civil, mechanical and aerospace engineering. The time-fractional derivative is described in the Caputo sense. Backward Euler scheme is used for time discretization and the quintic B-spline-based numerical method is used for space discretization. The stability and convergence properties related to the time discretization are discussed and theoretically proven. The given problem is solved with three different boundary conditions, including clamped-type condition, simply supported-type condition, and a transversely supported-type condition. Numerical results are considered to investigate the accuracy and efficiency of the proposed method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.