Abstract

We provide a new algorithm for approximating the law of a one-dimensional diffusion M solving a stochastic differential equation with possibly irregular coefficients. The algorithm is based on the construction of Markov chains whose laws can be embedded into the diffusion M with a sequence of stopping times. The algorithm does not require any regularity or growth assumption; in particular it applies to SDEs with coefficients that are nowhere continuous and that grow superlinearly. We show that if the diffusion coefficient is bounded and bounded away from 0, then our algorithm has a weak convergence rate of order 1/4. Finally, we illustrate the algorithm's performance with several examples.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.