Abstract

SummarySkorokhod (1961) demonstrated how the study of martingale sequences (and zero-mean random walks) can be reduced to the study of the Wiener process (without drift) at a sequence of random stopping times. We show how the study of certain submartingale sequences, including certain random walks with drift and log likelihood ratio sequences, can be reduced to the study of the Wiener process with drift at a sequence of stopping times (Theorem 4.1). Applications to absorption problems are given. Specifically, we present new derivations of a number of the basic approximations and inequalities of classical sequential analysis, and some variations on them — including an improvement on Wald's lower bound for the expected sample size function (Corollary 7.5).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.