Abstract

We determine the convergence speed of a numerical scheme for approximating one-dimensional continuous strong Markov processes. The scheme is based on the construction of certain Markov chains whose laws can be embedded into the process with a sequence of stopping times. Under a mild condition on the process' speed measure we prove that the approximating Markov chains converge at fixed times at the rate of 1/4 with respect to every p-th Wasserstein distance. For the convergence of paths, we prove any rate strictly smaller than 1/4. Our results apply, in particular, to processes with irregular behavior such as solutions of SDEs with irregular coefficients and processes with sticky points.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.