Abstract

This paper is an extended study from previous work. In this study, the focus is paid to the dynamics of bubble rising and deformation in a complex channel, while the previous work is in straight channel. For this purpose, a three-dimensional lattice Boltzmann method (LBM) is employed to simulate the dynamics behaviour of a bubble rising in a complex channel consisting of three half-round throats. To validate the numerical method, a visual experiment was carried out by means of a high-speed digital camera and computer image processing technology. The behaviour of the rising bubble through glycerine solution in a complex channel was recorded. Some physical parameters such as rising velocities, trajectory and shapes of the bubble were calculated and processed based on the experimental data. In the same conditions, the trajectory, shapes and rising velocities of the bubble were simulated during its rising process by the proposed LBM. The numerical results are in good agreement with the experimental results. It demonstrates that LBM used in this work is feasible for simulating two-phase flow in such a complex channel.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call