Abstract
A piezoelectric fan is an attractive device to remove heat from microelectronic systems due to its low power consumption, minimal noise and compactness. In the present study, a piezoelectric fan is investigated to analyze the cooling capability for possible use in electronic devices. Both numerical and experimental analyses are carried out on the piezoelectric fan which was oriented horizontally. The FLUENT 6.3 software is used in the 2D simulation to predict the heat transfer coefficient and the flow fields using a dynamic mesh option to observe the fan swinging phenomena. Two heat sources in in-line arrangement are used in the experiment. The flow measurements are carried out at different piezoelectric fan heights by using a particle image velocimetry (PIV) system. The result shows that the piezofan height of h p/ l p = 0.23 can reduce the temperature of the heat source surface as much as 68.9 °C. The numerical and experimental values of heat transfer coefficients are plotted and found in good agreement.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Communications in Heat and Mass Transfer
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.