Abstract

BackgroundMiddle turbinectomy (MT) has always been controversial. MT significantly alters the anatomy and redistributes the inhaled air. The current study is designed to quantify the effect of MT with varying resection volumes on airflow and associated pollen inhalation exposure characteristics in the nasal airways. MethodsSix realistic models following bilateral comprehensive Functional Endoscopic Sinus Surgery (FESS) deriving from CT images were constructed and their corresponding post-MT models with four types of MT procedures were virtually conducted. Inhalation exposure to pollen particles was simulated by the Computational Fluid-Particle Dynamics (CFPD) approach and validated through in vitro experiments. ResultsFollowing the excision of the middle turbinate, a significant escalation in airflow was observed within the upper-middle region of the nasal cavities. Pollen deposition was observed to be more prominent in the nasal septum, laryngopharynx, and maxillary sinus, varying with the types of MT procedures. Notably, particles with diameters smaller than 50 μm exhibited two distinct “high peaks” and three “small peaks” within the nasal airways. ConclusionMT resulted in increased airflow volume within the upper-middle region of the nasal cavities. Following MT, notable shifts in pollen particle deposition hot spots were observed, transitioning from the nasal vestibule, nasal septum, and middle meatus to the nasal septum and laryngopharynx. These findings are anticipated to contribute valuable perspectives on pollen inhalation exposure risk assessments following diverse MT surgical interventions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call