Abstract

A model governing the motion of an aquatic robot with a shell in the form of a symmetrical airfoil NACA0040 is considered. The motion is controlled by periodic oscillations of the rotor. It is numerically shown that for physically admissible values of the control parameters in the phase space of the system, there exists only one limit cycle. The limit cycle that occurs under symmetric control corresponds to the motion of the robot near a straight line. In the case of asymmetric controls, the robot moves near a circle. An algorithm for controlling the course of the robot motion is proposed. This algorithm uses determined limit cycles and transient processes between them.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call