Abstract

We study the continuous and discontinuous planar piecewise differential systems formed by linear centres together with linear Hamiltonian saddles separated by one or two parallel straight lines. When these piecewise differential systems are either continuous or discontinuous separated by one straight line, they have no limit cycles. When these piecewise differential systems are continuous and are separated by two parallel straight lines they do not have limit cycles. On the other hand, when these piecewise differential systems are discontinuous and separated by two parallel straight lines (either two centres and one saddle, or two saddles and one centre), we show that they can have at most one limit cycle, and that there exist such systems with one limit cycle. If the piecewise differential systems separated by two parallel straight lines have three linear centres or three linear Hamiltonian saddles it is known that they have at most one limit cycle.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.