Abstract

The article studies direct and inverse problems for subdiffusion equations involving a Hilfer fractional derivative. An arbitrary positive self-adjoint operator $A$ is taken as the elliptic part of the equation. In particular, as the operator $A$ we can take the Laplace operator with the Dirichlet condition. First, the existence and uniqueness of a solution to the direct problem is proven. Then, using the representation of the solution to the direct problem, the existence and uniqueness of the inverse problem of finding the right-hand side of the equation, which depends only on the spatial variable, is proved.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.