Abstract
We have studied the effect of the interfacial chemical reaction between PA6 and MA-g-HDPE in static conditions at a macroscopically flat interface. Interface destabilization and the growth of instabilities, somehow similar to myelin figures observed in surfactants put in the presence of water, are observed. For the first time in this system, it is shown that ordered microphase-separated copolymer domains, whose morphologies depend on the architecture of the copolymer, namely, essentially on the relative length of the blocks on each side of the interface, may nucleate and grow at a static interface between reactive polymers. We discuss the stability of the plane interface in the case of nonsymmetrical formed graft copolymers. The density of copolymers in the interface (coverage) can be estimated accurately from the long period of the formed structures. We confirm the predictions of Berezkin et al. This observation is very important since it confirms that nanometric domains are certainly generated during reactive extrusion, in addition to micrometric domains formed by rheological processes.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have