Abstract

ABSTRACTPlan-view and cross-sectional transmission electron microscopy have been used to study the microstructural characterization of the nucleation and growth behavior of {113} rodlike defects, as well as their correlation with {111} dislocation loops in silicon amorphized with 50 keV, 36×1014 Si/cm2, 8.0 mAand annealed by rapid thermal anneals at temperatures from 500 °C to 1100 °C for various times. We found that the nucleations of the {113} rodlike defects and {111} dislocation loops are two separate processes. At the beginning of anneals, excess interstitials accumulate and form circular interstitial clusters at the preamorphous/crystalline interface at as low as 600 °C for 1 s. Then these interstitial clusters grow along the <110> direction to form {113} rodlike defects. Later, while the {113} defects have begun to grow and/or dissolve into matrix, the {111} faulted Frank dislocation loops start to form. We also found that the initial interstitial clusters prefer to grow along the <110>directions inclined to the implantation surface.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call