Abstract

We describe a new molecular mechanism of cell death by excitotoxicity mediated through nuclear transcription factor kappa B (NF kappa B) in rat embryonic cultures of dopaminergic neurons. Treatment of mesencephalic cultures with alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) resulted in a number of changes that occurred selectively in dopaminergic neurons, including persistent elevation in intracellular Ca(2+) monitored with Fura-2, and a significant increase in intramitochondrial oxidation of dihydrorhodamine 123, probably associated with transient increase of mitochondrial permeability, cytochrome c release, nuclear translocation of NF kappa B, and transcriptional activation of the oncogene p53. Interruption of any of these steps by specific antagonists prevented neurite pruning and programmed cell death. In contrast, cell death was not prevented by caspase antagonists and only partly prevented by nitric-oxide synthase inhibitors. This signal transduction pathway might be a contributing mechanism in ongoing neuronal death in Parkinson disease.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.